原子吸收
原子吸收光譜儀是分析化學領域中一種重要的分析方法,已廣泛用于冶金工業(yè)。原子吸收光譜法是利用被測元素的基態(tài)原子特征輻射線的吸收程度進行定量分析的方法。既可進行某些常量組分測定,又能進行ppm、ppb級微量測定,可進行鋼鐵中低含量的Cr、Ni、Cu、Mn、Mo、Ca、Mg、Al、Cd、Pb、Ad;原材料、鐵合金中的K2O、Na2O、MgO、Pb、Zn、Cu、Ba、Ca等元素分析及一些純金屬(如Al、Cu)中殘余元素的檢測。
光譜儀器的產生原子吸收光譜作為一種實用的分析方法是從1955年開始的。這一年澳大利亞的瓦爾什(A.Walsh)發(fā)表了他的論文‘原子吸收光譜在化學分析中的應用’奠定了原子吸收光譜法的基礎。50年代末和60年代初,Hilger, Varian Techtron及Perkin-Elmer公司先后推出了原子吸收光譜商品儀器,發(fā)展了瓦爾西的設計思想。到了60年代中期,原子吸收光譜開始進入迅速發(fā)展的時期。電熱原子吸收光譜儀器的產生1959年,蘇聯(lián)里沃夫發(fā)表了電熱原子化技術的*篇論文。電熱原子吸收光譜法的靈敏度可達到10
光譜法是依椐處于氣態(tài)的被測元素基態(tài)原子對該元素的原子共振輻射有強烈的吸收作用而建立的。該法具有檢出限低準確度高,選擇性好,分析速度快等優(yōu)點。
度吸收光程,進樣方式等實驗條件固定時,樣品產生的待測元素相基態(tài)原子對作為銳線光源的該元素的空心陰極燈所輻射的單色光產生吸收,其吸光度(A)與樣品中該元素的濃度(C)成正比。即 A=KC 式中,K為常數(shù)。據此,通過測量標準溶液及未知溶液的吸光度,又已知標準溶液濃度,可作標準曲線,求得未知液中待測元素濃度。
原子熒光:氣態(tài)自由原子吸收光源的特征輻射后,原子的外層電子躍遷到較高能級,然后又躍遷返回基態(tài)或較低能級,同時發(fā)射出與原激發(fā)波長相同或不同的發(fā)射即為原子熒光。原子熒光是光致發(fā),也是二次發(fā)光。當激發(fā)光源停止照射之后,再發(fā)射過程立即停止。
原子熒光可分共振熒光、非共振熒光與敏化熒光等三種類型。圖為原子熒光產生的過程。
A 起源于基態(tài)的共振熒光 起源于基態(tài) 正常階躍熒光 起源于亞穩(wěn)態(tài)
B 熱助共振熒光 起源于亞穩(wěn)態(tài) 熱助階躍熒光 起源于基態(tài)
氣態(tài)原子吸收共振線被激發(fā)后,再發(fā)射與原吸收線波長相同的熒光即是共振熒光。它的特點是激發(fā)線與熒光線的高低能級相同,其產生過程見圖中之A。如鋅原子吸收213.86nm的光,它發(fā)射熒光的波長也為213.861 nm。若原子受熱激發(fā)處于亞穩(wěn)態(tài),再吸收輻射進一步激發(fā),然后再發(fā)射相同波長的共振熒光,此種原子熒光稱為熱助共振熒光。見圖(a)中之B。
當熒光與激發(fā)光的波長不相同時,產生非共振熒光。非共振熒光又分為直躍線熒光、階躍線熒光、anti-Stokes(反斯托克斯)熒光。
(i)直躍線熒光
激發(fā)態(tài)原子躍遷回至高于基態(tài)的亞穩(wěn)態(tài)時所發(fā)射的熒光稱為直躍線熒光,見圖(b)。由于熒光的能級間隔小于激發(fā)線的能級間隔,所以熒光的波長大于激發(fā)線的波長。如鉛原子吸收283.31nm的光,而發(fā)射405.78nm的熒光。它是激發(fā)線和熒光線具有相同的高能級,而低能級不同。如果熒光線激發(fā)能大于熒光能,即熒光線的波長大于激發(fā)線的波長稱為Stokes熒光;反之,稱為anti-Stokes熒光。直躍線熒光為Stokes熒光。
(ii)階躍線熒光
有兩種情況,正常階躍熒光為被光照激發(fā)的原子,以非輻射形式去激發(fā)返回到較低能級,再以發(fā)射形式返回基態(tài)而發(fā)射的熒光。很顯然,熒光波長大于激發(fā)線波長。例鈉原子吸收330.30nm光,發(fā)射出588.99nm的熒光。非輻射形式為在原子化器中原子與其他粒子碰撞的去激發(fā)過程。熱助階躍熒光為被光照射激發(fā)的原子,躍遷至中間能級,又發(fā)生熱激發(fā)至高能級,然后返回至低能級發(fā)射的熒光。例如鉻原子被359.35nm的光激發(fā)后,會產生很強的357.87nm熒光。階躍線熒光產生見圖(c)。
(iii)anti-Stokes熒光
當自由原子躍遷至某一能級,其獲得的能量一部分是由光源激發(fā)能供給,另一部分是熱能供給,然后返回低能級所發(fā)射的熒光為anti-Stokes熒光。其熒光能大于激發(fā)能,熒光波長小于激發(fā)線波長。例如銦吸收熱能后處于一較低的亞穩(wěn)能級,再吸收451.13nm的光后,發(fā)射410.18nm的熒光,見圖(d)。
受光激發(fā)的原子與另一種原子碰撞時,把激發(fā)能傳遞給另一個原子使其激發(fā),后者再以發(fā)射形式去激發(fā)而發(fā)射熒光即為敏化熒光?;鹧嬖踊髦杏^察不到敏化熒光,在非火焰原子化器中才能觀察到。 在以上各種類型的原子熒光中,共振熒光強度zui大,zui為常用。
量子效率與熒光猝滅
受光激發(fā)的原子,可能發(fā)射共振熒光,也可能發(fā)射非共振熒光,還可能躍遷至低能級,所以量子效率一般小于1。 受激原子和其他粒子碰撞,把一部分能量變成熱運動與其他形式的能量,因而發(fā)生的去激發(fā)過程,這種現(xiàn)象稱為熒光猝滅。熒光的猝滅會使熒光的量子效率降低,熒光強度減弱。許多元素在烴類火焰中要比用氬稀釋的氫—氧火焰中熒光猝滅大得多,因此原子熒光光譜法,盡量不用烴類火焰,而用氬稀釋的氫—氧火焰代替。
技術咨詢:廣州瑞佳斯實驗室設備科技有限公司
上一篇 : 如何合理設計實驗室系統(tǒng)工程的實驗室?
下一篇 : 氣相色譜與液相色譜